DOCUMENTATION TUTORIALS DOWNLOAD NEWS CONTRIBUTE

6. Breeding

So far we created agents only during the initialisation of the simulation. In this sixth step we Illustrate how to create new agents during a simulation of a dynamic species.

Formulation

Model Definition

parameters

We add six new parameters related to breeding:

We define six new global variables in the global section:

global {
   ...
   float prey_proba_reproduce <- 0.01;
   int prey_nb_max_offsprings <- 5; 
   float prey_energy_reproduce <- 0.5; 
   float predator_proba_reproduce <- 0.01;
   int predator_nb_max_offsprings <- 3;
   float predator_energy_reproduce <- 0.5;
}

We define then the six corresponding parameters in the experiment:

   parameter "Prey probability reproduce: " var: prey_proba_reproduce category: "Prey" ;
   parameter "Prey nb max offsprings: " var: prey_nb_max_offsprings category: "Prey" ;
   parameter "Prey energy reproduce: " var: prey_energy_reproduce category: "Prey" ;
   parameter "Predator probability reproduce: " var: predator_proba_reproduce category: "Predator" ;
   parameter "Predator nb max offsprings: " var: predator_nb_max_offsprings category: "Predator" ;
   parameter "Predator energy reproduce: " var: predator_energy_reproduce category: "Predator" ;

parent species

We add three new variables for the generic_species:

We add as well a new reflex called reproduce:

   species generic_species {
      ...
      float proba_reproduce ;
      int nb_max_offsprings;
      float energy_reproduce;
      ... 
      reflex reproduce when: (energy >= energy_reproduce) and (flip(proba_reproduce)) {
         int nb_offsprings <- 1 + rnd(nb_max_offsprings -1);
         create species(self) number: nb_offsprings {
            myCell <- myself.myCell ;
            location <- myCell.location ;
            energy <- myself.energy / nb_offsprings ;
         }
         energy <- energy / nb_offsprings ;
      }
   }

Note that two keywords can be used to make explicit references to some agents :

prey species

We specialize the prey species from the generic_species species:

   species prey parent: generic_species {
      ...
      float proba_reproduce <- prey_proba_reproduce ;
      int nb_max_offsprings <- prey_nb_max_offsprings ;
      float energy_reproduce <- prey_energy_reproduce ;
      ...
   }

predator species

As done for the prey species, we specialize the predator species from the generic_species species:

   species predator parent: generic_species {
      ...
      float proba_reproduce <- predator_proba_reproduce ;
      int nb_max_offsprings <- predator_nb_max_offsprings ;
      float energy_reproduce <- predator_energy_reproduce ;
      ...
   }

Complete Model

model prey_predator

global {
	int nb_preys_init <- 200;
	int nb_predators_init <- 20;
	float prey_max_energy <- 1.0;
	float prey_max_transfert <- 0.1 ;
	float prey_energy_consum <- 0.05;
	float predator_max_energy <- 1.0;
	float predator_energy_transfert <- 0.5;
	float predator_energy_consum <- 0.02;
	float prey_proba_reproduce <- 0.01;
	int prey_nb_max_offsprings <- 5; 
	float prey_energy_reproduce <- 0.5; 
	float predator_proba_reproduce <- 0.01;
	int predator_nb_max_offsprings <- 3;
	float predator_energy_reproduce <- 0.5;
	
	int nb_preys -> {length (prey)};
	int nb_predators -> {length (predator)};
	
	init {
		create prey number: nb_preys_init ; 
		create predator number: nb_predators_init ;
	}
}

species generic_species {
	float size <- 1.0;
	rgb color  ;
	float max_energy;
	float max_transfert;
	float energy_consum;
	float proba_reproduce ;
	int nb_max_offsprings;
	float energy_reproduce;
	vegetation_cell myCell <- one_of (vegetation_cell) ;
	float energy <- (rnd(1000) / 1000) * max_energy  update: energy - energy_consum max: max_energy ;
	
	init {
		location <- myCell.location;
	}
		
	reflex basic_move {
		myCell <- one_of (myCell.neighbours) ;
		location <- myCell.location ;
	}
		
	reflex die when: energy <= 0 {
		do die ;
	}
	
	reflex reproduce when: (energy >= energy_reproduce) and (flip(proba_reproduce)) {
		int nb_offsprings <- 1 + rnd(nb_max_offsprings -1);
		create species(self) number: nb_offsprings {
			myCell <- myself.myCell ;
			location <- myCell.location ;
			energy <- myself.energy / nb_offsprings ;
		}
		energy <- energy / nb_offsprings ;
	}
	
	aspect base {
		draw circle(size) color: color ;
	}
}

species prey parent: generic_species {
	rgb color <- #blue;
	float max_energy <- prey_max_energy ;
	float max_transfert <- prey_max_transfert ;
	float energy_consum <- prey_energy_consum ;
	float proba_reproduce <- prey_proba_reproduce ;
	int nb_max_offsprings <- prey_nb_max_offsprings ;
	float energy_reproduce <- prey_energy_reproduce ;
		
	reflex eat when: myCell.food > 0 {
		float energy_transfert <- min([max_transfert, myCell.food]) ;
		myCell.food <- myCell.food - energy_transfert ;
		energy <- energy + energy_transfert ;
	}
}
	
species predator parent: generic_species {
	rgb color <- #red ;
	float max_energy <- predator_max_energy ;
	float energy_transfert <- predator_energy_transfert ;
	float energy_consum <- predator_energy_consum ;
	list<prey> reachable_preys update: prey inside (myCell);
	float proba_reproduce <- predator_proba_reproduce ;
	int nb_max_offsprings <- predator_nb_max_offsprings ;
	float energy_reproduce <- predator_energy_reproduce ;
		
	reflex eat when: ! empty(reachable_preys) {
		ask one_of (reachable_preys) {
			do die ;
		}
		energy <- energy + energy_transfert ;
	}
}
	
grid vegetation_cell width: 50 height: 50 neighbours: 4 {
	float maxFood <- 1.0 ;
	float foodProd <- (rnd(1000) / 1000) * 0.01 ;
	float food <- (rnd(1000) / 1000) max: maxFood update: food + foodProd ;
	rgb color <- rgb(int(255 * (1 - food)), 255, int(255 * (1 - food))) update: rgb(int(255 * (1 - food)), 255, int(255 *(1 - food)));
	list<vegetation_cell> neighbours  <- (self neighbours_at 2); 
}

experiment prey_predator type: gui {
	parameter "Initial number of preys: " var: nb_preys_init  min: 0 max: 1000 category: "Prey" ;
	parameter "Prey max energy: " var: prey_max_energy category: "Prey" ;
	parameter "Prey max transfert: " var: prey_max_transfert  category: "Prey" ;
	parameter "Prey energy consumption: " var: prey_energy_consum  category: "Prey" ;
	parameter "Initial number of predators: " var: nb_predators_init  min: 0 max: 200 category: "Predator" ;
	parameter "Predator max energy: " var: predator_max_energy category: "Predator" ;
	parameter "Predator energy transfert: " var: predator_energy_transfert  category: "Predator" ;
	parameter "Predator energy consumption: " var: predator_energy_consum  category: "Predator" ;
	parameter 'Prey probability reproduce: ' var: prey_proba_reproduce category: 'Prey' ;
	parameter 'Prey nb max offsprings: ' var: prey_nb_max_offsprings category: 'Prey' ;
	parameter 'Prey energy reproduce: ' var: prey_energy_reproduce category: 'Prey' ;
	parameter 'Predator probability reproduce: ' var: predator_proba_reproduce category: 'Predator' ;
	parameter 'Predator nb max offsprings: ' var: predator_nb_max_offsprings category: 'Predator' ;
	parameter 'Predator energy reproduce: ' var: predator_energy_reproduce category: 'Predator' ;
	
	output {
		display main_display {
			grid vegetation_cell lines: #black ;
			species prey aspect: base ;
			species predator aspect: base ;
		}
		monitor "Number of preys" value: nb_preys;
		monitor "Number of predators" value: nb_predators;
	}
}