#Operators (D to M)
This file is automatically generated from java files. Do Not Edit It.
Operators in the GAML language are used to compose complex expressions. An operator performs a function on one, two, or n operands (which are other expressions and thus may be themselves composed of operators) and returns the result of this function.
Most of them use a classical prefixed functional syntax (i.e. operator_name(operand1, operand2, operand3)
, see below), with the exception of arithmetic (e.g. +
, /
), logical (and
, or
), comparison (e.g. >
, <
), access (.
, [..]
) and pair (::
) operators, which require an infixed notation (i.e. operand1 operator_symbol operand1
).
The ternary functional if-else operator, ? :
, uses a special infixed syntax composed with two symbols (e.g. operand1 ? operand2 : operand3
). Two unary operators (-
and !
) use a traditional prefixed syntax that does not require parentheses unless the operand is itself a complex expression (e.g. ` - 10,
! (operand1 or operand2)`).
Finally, special constructor operators ({...}
for constructing points, [...]
for constructing lists and maps) will require their operands to be placed between their two symbols (e.g. {1,2,3}
, [operand1, operand2, ..., operandn]
or [key1::value1, key2::value2... keyn::valuen]
).
With the exception of these special cases above, the following rules apply to the syntax of operators:
operator_name(operand1)
)operator_name(operand1, operand2)
) or the infixed syntax (e.g. operand1 operator_name operand2
) can be used.operator_name(operand1, operand2, ..., operand)
) or a special infixed syntax with the first operand on the left-hand side of the operator name (e.g. operand1 operator_name(operand2, ..., operand)
) can be used.All of these alternative syntaxes are completely equivalent.
Operators in GAML are purely functional, i.e. they are guaranteed to not have any side effects on their operands. For instance, the shuffle
operator, which randomizes the positions of elements in a list, does not modify its list operand but returns a new shuffled list.
The priority of operators determines, in the case of complex expressions composed of several operators, which one(s) will be evaluated first.
GAML follows in general the traditional priorities attributed to arithmetic, boolean, comparison operators, with some twists. Namely:
::
, used to compose pairs of operands, have the lowest priority of all operators (e.g. a > b :: b > c
will return a pair of boolean values, which means that the two comparisons are evaluated before the operator applies. Similarly, [a > 10, b > 5]
will return a list of boolean values.?:
operator, the functional if-else (e.g. ` a > b ? a + 10 : a - 10` will return the result of the if-else).and
and or
(e.g. a > b or b > c
will return the value of the test)>
, <
, <=
, >=
, =
, !=
)-
and !
.
and []
(e.g. {1,2,3}.x > 20 + {4,5,6}.y
will return the result of the comparison between the x and y ordinates of the two points)Actions defined in species can be used as operators, provided they are called on the correct agent. The syntax is that of normal functional operators, but the agent that will perform the action must be added as the first operand.
For instance, if the following species is defined:
species spec1 {
int min(int x, int y) {
return x > y ? x : y;
}
}
Any agent instance of spec1 can use min
as an operator (if the action conflicts with an existing operator, a warning will be emitted). For instance, in the same model, the following line is perfectly acceptable:
global {
init {
create spec1;
spec1 my_agent <- spec1[0];
int the_min <- my_agent min(10,20); // or min(my_agent, 10, 20);
}
}
If the action doesn’t have any operands, the syntax to use is my_agent the_action()
. Finally, if it does not return a value, it might still be used but is considering as returning a value of type unknown
(e.g. unknown result <- my_agent the_action(op1, op2);
).
Note that due to the fact that actions are written by modelers, the general functional contract is not respected in that case: actions might perfectly have side effects on their operands (including the agent).
box, cone3D, cube, cylinder, dem, hexagon, pyramid, rgb_to_xyz, set_z, sphere, teapot,
-, /, [^](OperatorsAC#^), [](OperatorsAC#), +, abs, acos, asin, atan, atan2, ceil, cos, cos_rad, div, even, exp, fact, floor, hypot, is_finite, is_number, ln, log, mod, round, signum, sin, sin_rad, sqrt, tan, tan_rad, tanh, with_precision,
and, eval_when, get_about, get_agent, get_agent_cause, get_decay, get_dominance, get_familiarity, get_intensity, get_lifetime, get_liking, get_praiseworthiness, get_priority, get_solidarity, get_super_intention, new_emotion, new_predicate, new_social_link, or, set_about, set_agent, set_agent_cause, set_decay, set_dominance, set_familiarity, set_intensity, set_liking, set_solidarity, set_truth, with_lifetime, with_praiseworthiness, with_priority, with_values,
as, as_int, as_matrix, font, is, is_skill, list_with, matrix_with, species, to_gaml, topology,
-, /, [](OperatorsAC#), +, blend, brewer_colors, brewer_palettes, grayscale, hsb, mean, median, rgb, rnd_color, sum,
-, ::, +, accumulate, among, at, collect, contains, contains_all, contains_any, count, distinct, empty, every, first, first_with, get, group_by, in, index_by, inter, interleave, internal_at, internal_integrated_value, last, last_with, length, max, max_of, mean, mean_of, median, min, min_of, mul, one_of, product_of, range, reverse, shuffle, sort_by, sum, sum_of, union, variance_of, where, with_max_of, with_min_of,
-, !=, +, <, <=, =, >, >=, after, before, between, every, milliseconds_between, minus_days, minus_hours, minus_minutes, minus_months, minus_ms, minus_weeks, minus_years, months_between, plus_days, plus_hours, plus_minutes, plus_months, plus_ms, plus_weeks, plus_years, since, to, until, years_between,
diff, diff2, internal_zero_order_equation,
crs, file, file_exists, folder, get, new_folder, osm_file, read, writable,
add_edge, add_node, adjacency, agent_from_geometry, all_pairs_shortest_path, alpha_index, as_distance_graph, as_edge_graph, as_intersection_graph, as_path, beta_index, betweenness_centrality, biggest_cliques_of, connected_components_of, connectivity_index, contains_edge, contains_vertex, degree_of, directed, edge, edge_between, edge_betweenness, edges, gamma_index, generate_barabasi_albert, generate_complete_graph, generate_watts_strogatz, grid_cells_to_graph, in_degree_of, in_edges_of, layout, load_graph_from_file, load_shortest_paths, maximal_cliques_of, nb_cycles, neighbors_of, node, nodes, out_degree_of, out_edges_of, path_between, paths_between, predecessors_of, remove_node_from, rewire_n, source_of, spatial_graph, successors_of, sum, target_of, undirected, use_cache, weight_of, with_optimizer_type, with_weights,
as_4_grid, as_grid, as_hexagonal_grid, grid_at, path_between,
accumulate, as_map, collect, count, distribution_of, distribution_of, distribution_of, distribution2d_of, distribution2d_of, distribution2d_of, first_with, frequency_of, group_by, index_by, last_with, max_of, mean_of, min_of, product_of, sort_by, sum_of, variance_of, where, with_max_of, with_min_of,
copy_between, index_of, last_index_of,
fuzzy_kappa, fuzzy_kappa_sim, kappa, kappa_sim, percent_absolute_deviation,
as_map, index_of, last_index_of,
-, /, ., [](OperatorsAC#), +, append_horizontally, append_vertically, column_at, columns_list, determinant, eigenvalues, index_of, inverse, last_index_of, row_at, rows_list, shuffle, trace, transpose,
electre_DM, evidence_theory_DM, promethee_DM, weighted_means_DM,
agent_from_geometry, all_pairs_shortest_path, as_path, load_shortest_paths, path_between, path_to, paths_between, use_cache,
-, /, [](OperatorsAC#), +, <, <=, >, >=, add_point, angle_between, any_location_in, centroid, closest_points_with, farthest_point_to, grid_at, norm, point, points_along, points_at, points_on,
binomial, flip, gauss, poisson, rnd, rnd_choice, sample, shuffle, skew_gauss, truncated_gauss,
arc, box, circle, cone, cone3D, cross, cube, curve, cylinder, ellipse, envelope, geometry_collection, hexagon, line, link, plan, polygon, polyhedron, pyramid, rectangle, sphere, square, squircle, teapot, triangle,
-, [](OperatorsAC#), +, add_point, agent_closest_to, agent_farthest_to, agents_at_distance, agents_inside, agents_overlapping, angle_between, any_location_in, arc, around, as_4_grid, as_grid, as_hexagonal_grid, at_distance, at_location, box, centroid, circle, clean, closest_points_with, closest_to, cone, cone3D, convex_hull, covers, cross, crosses, crs, CRS_transform, cube, curve, cylinder, dem, direction_between, disjoint_from, distance_between, distance_to, ellipse, envelope, farthest_point_to, farthest_to, geometry_collection, gini, hexagon, hierarchical_clustering, IDW, inside, inter, intersects, line, link, masked_by, moran, neighbors_at, neighbors_of, overlapping, overlaps, partially_overlaps, path_between, path_to, plan, points_along, points_at, points_on, polygon, polyhedron, pyramid, rectangle, rgb_to_xyz, rotated_by, round, scaled_to, set_z, simple_clustering_by_distance, simplification, skeletonize, smooth, sphere, split_at, split_geometry, split_lines, square, squircle, teapot, to_GAMA_CRS, to_rectangles, to_squares, touches, towards, transformed_by, translated_by, triangle, triangulate, union, using, voronoi, with_precision, without_holes,
covers, crosses, intersects, partially_overlaps, touches,
agent_closest_to, agent_farthest_to, agents_at_distance, agents_inside, agents_overlapping, at_distance, closest_to, farthest_to, inside, neighbors_at, neighbors_of, overlapping,
direction_between, distance_between, distance_to, path_between, path_to, towards,
hierarchical_clustering, simple_clustering_by_distance,
-, [](OperatorsAC#), +, as_4_grid, as_grid, as_hexagonal_grid, at_location, clean, convex_hull, CRS_transform, rotated_by, scaled_to, simplification, skeletonize, smooth, split_geometry, split_lines, to_GAMA_CRS, to_rectangles, to_squares, transformed_by, translated_by, triangulate, voronoi, without_holes,
index_of, last_index_of, of_generic_species, of_species,
build, corR, dbscan, distribution_of, distribution2d_of, frequency_of, gamma_rnd, geometric_mean, gini, harmonic_mean, hierarchical_clustering, kmeans, kurtosis, max, mean, mean_deviation, meanR, median, min, moran, mul, predict, simple_clustering_by_distance, skewness, standard_deviation, sum, variance,
+, <, <=, >, >=, at, char, contains, contains_all, contains_any, copy_between, date, empty, first, in, indented_by, index_of, is_number, last, last_index_of, length, lower_case, replace, replace_regex, reverse, sample, shuffle, split_with, string, upper_case,
., command, copy, dead, eval_gaml, every, user_input,
date
string
date
string
—> date
date
(string
, string
) —> date
converts a string to a date following a custom pattern. The pattern can use “%Y %M %N %D %E %h %m %s %z” for outputting years, months, name of month, days, name of days, hours, minutes, seconds and the time-zone. A null or empty pattern will parse the date using one of the ISO date & time formats (similar to date(‘…’) in that case). The pattern can also follow the pattern definition found here, which gives much more control over what will be parsed: https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html#patterns. Different patterns are available by default as constant: #iso_local, #iso_simple, #iso_offset, #iso_zoned and #custom, which can be changed in the preferences
date("1999-12-30", 'yyyy-MM-dd')
dbscan
dbscan
(list
, float
, int
) —> list<list>
returns the list of clusters (list of instance indices) computed with the dbscan (density-based spatial clustering of applications with noise) algorithm from the first operand data according to the maximum radius of the neighborhood to be considered (eps) and the minimum number of points needed for a cluster (minPts). Usage: dbscan(data,eps,minPoints)
dbscan ([[2,4,5], [3,8,2], [1,1,3], [4,3,4]],10,2)
dead
dead
(agent
) —> bool
true if the agent is dead (or null), false otherwise.
bool var0 <- dead(agent_A); // var0 equals true or false
degree_of
graph
degree_of
unknown
—> int
degree_of
(graph
, unknown
) —> int
returns the degree (in+out) of a vertex (right-hand operand) in the graph given as left-hand operand.
int var1 <- graphFromMap degree_of (node(3)); // var1 equals 3
dem
dem
(file
) —> geometry
file
dem
file
—> geometry
dem
(file
, file
) —> geometry
file
dem
float
—> geometry
dem
(file
, float
) —> geometry
dem
(file
, file
, float
) —> geometry
A polygon that is equivalent to the surface of the texture
geometry var0 <- dem(dem,texture,z_factor); // var0 equals a geometry as a rectangle of width and height equal to the texture.
geometry var1 <- dem(dem,texture); // var1 equals a geometry as a rectangle of weight and height equal to the texture.
geometry var2 <- dem(dem,z_factor); // var2 equals a geometry as a rectangle of weight and height equal to the texture.
geometry var3 <- dem(dem); // var3 equals returns a geometry as a rectangle of width and height equal to the texture.
det
Same signification as determinant
determinant
determinant
(matrix
) —> float
The determinant of the given matrix
float var0 <- determinant(matrix([[1,2],[3,4]])); // var0 equals -2
diff
float
diff
float
—> float
diff
(float
, float
) —> float
diff2
float
diff2
float
—> float
diff2
(float
, float
) —> float
directed
directed
(graph
) —> graph
the operand graph becomes a directed graph.
the operator alters the operand graph, it does not create a new one.
direction_between
topology
direction_between
container<geometry>
—> int
direction_between
(topology
, container<geometry>
) —> int
A direction (in degree) between a list of two geometries (geometries, agents, points) considering a topology.
int var0 <- my_topology direction_between [ag1, ag2]; // var0 equals the direction between ag1 and ag2 considering the topology my_topology
towards, direction_to, distance_to, distance_between, path_between, path_to,
direction_to
Same signification as towards
disjoint_from
geometry
disjoint_from
geometry
—> bool
disjoint_from
(geometry
, geometry
) —> bool
A boolean, equal to true if the left-geometry (or agent/point) is disjoints from the right-geometry (or agent/point).
bool var0 <- polyline([{10,10},{20,20}]) disjoint_from polyline([{15,15},{25,25}]); // var0 equals false
bool var1 <- polygon([{10,10},{10,20},{20,20},{20,10}]) disjoint_from polygon([{15,15},{15,25},{25,25},{25,15}]); // var1 equals false
bool var2 <- polygon([{10,10},{10,20},{20,20},{20,10}]) disjoint_from {15,15}; // var2 equals false
bool var3 <- polygon([{10,10},{10,20},{20,20},{20,10}]) disjoint_from {25,25}; // var3 equals true
bool var4 <- polygon([{10,10},{10,20},{20,20},{20,10}]) disjoint_from polygon([{35,35},{35,45},{45,45},{45,35}]); // var4 equals true
intersects, crosses, overlaps, partially_overlaps, touches,
distance_between
topology
distance_between
container<geometry>
—> float
distance_between
(topology
, container<geometry>
) —> float
A distance between a list of geometries (geometries, agents, points) considering a topology.
float var0 <- my_topology distance_between [ag1, ag2, ag3]; // var0 equals the distance between ag1, ag2 and ag3 considering the topology my_topology
towards, direction_to, distance_to, direction_between, path_between, path_to,
distance_to
geometry
distance_to
geometry
—> float
distance_to
(geometry
, geometry
) —> float
point
distance_to
point
—> float
distance_to
(point
, point
) —> float
A distance between two geometries (geometries, agents or points) considering the topology of the agent applying the operator.
float var0 <- ag1 distance_to ag2; // var0 equals the distance between ag1 and ag2 considering the topology of the agent applying the operator
towards, direction_to, distance_between, direction_between, path_between, path_to,
distinct
distinct
(container
) —> container
produces a set from the elements of the operand (i.e. a list without duplicated elements)
container var1 <- remove_duplicates([1::3,2::4,3::3,5::7]); // var1 equals [3,4,7]
container var0 <- remove_duplicates([3,2,5,1,2,3,5,5,5]); // var0 equals [3,2,5,1]
distribution_of
distribution_of
(container
) —> map
container
distribution_of
int
—> map
distribution_of
(container
, int
) —> map
distribution_of
(container
, int
, float
, float
) —> map
Discretize a list of values into n bins (computes the bins from a numerical variable into n (default 10) bins. Returns a distribution map with the values (values key), the interval legends (legend key), the distribution parameters (params keys, for cumulative charts). Parameters can be (list), (list, nbbins) or (list,nbbins,valmin,valmax)
map var0 <- distribution_of([1,1,2,12.5]); // var0 equals map(['values'::[2,1,0,0,0,0,1,0,0,0],'legend'::['[0.0:2.0]','[2.0:4.0]','[4.0:6.0]','[6.0:8.0]','[8.0:10.0]','[10.0:12.0]','[12.0:14.0]','[14.0:16.0]','[16.0:18.0]','[18.0:20.0]'],'parlist'::[1,0]])
map var1 <- distribution_of([1,1,2,12.5],10); // var1 equals map(['values'::[2,1,0,0,0,0,1,0,0,0],'legend'::['[0.0:2.0]','[2.0:4.0]','[4.0:6.0]','[6.0:8.0]','[8.0:10.0]','[10.0:12.0]','[12.0:14.0]','[14.0:16.0]','[16.0:18.0]','[18.0:20.0]'],'parlist'::[1,0]])
map var2 <- distribution_of([1,1,2,12.5]); // var2 equals map(['values'::[2,1,0,0,0,0,1,0,0,0],'legend'::['[0.0:2.0]','[2.0:4.0]','[4.0:6.0]','[6.0:8.0]','[8.0:10.0]','[10.0:12.0]','[12.0:14.0]','[14.0:16.0]','[16.0:18.0]','[18.0:20.0]'],'parlist'::[1,0]])
distribution2d_of
container
distribution2d_of
container
—> map
distribution2d_of
(container
, container
) —> map
distribution2d_of
(container
, container
, int
, int
) —> map
distribution2d_of
(container
, container
, int
, float
, float
, int
, float
, float
) —> map
Discretize two lists of values into n bins (computes the bins from a numerical variable into n (default 10) bins. Returns a distribution map with the values (values key), the interval legends (legend key), the distribution parameters (params keys, for cumulative charts). Parameters can be (list), (list, nbbins) or (list,nbbins,valmin,valmax)
map var0 <- distribution_of([1,1,2,12.5],10); // var0 equals map(['values'::[2,1,0,0,0,0,1,0,0,0],'legend'::['[0.0:2.0]','[2.0:4.0]','[4.0:6.0]','[6.0:8.0]','[8.0:10.0]','[10.0:12.0]','[12.0:14.0]','[14.0:16.0]','[16.0:18.0]','[18.0:20.0]'],'parlist'::[1,0]])
map var1 <- distribution2d_of([1,1,2,12.5]); // var1 equals map(['values'::[2,1,0,0,0,0,1,0,0,0],'legend'::['[0.0:2.0]','[2.0:4.0]','[4.0:6.0]','[6.0:8.0]','[8.0:10.0]','[10.0:12.0]','[12.0:14.0]','[14.0:16.0]','[16.0:18.0]','[18.0:20.0]'],'parlist'::[1,0]])
map var2 <- distribution_of([1,1,2,12.5],10); // var2 equals map(['values'::[2,1,0,0,0,0,1,0,0,0],'legend'::['[0.0:2.0]','[2.0:4.0]','[4.0:6.0]','[6.0:8.0]','[8.0:10.0]','[10.0:12.0]','[12.0:14.0]','[14.0:16.0]','[16.0:18.0]','[18.0:20.0]'],'parlist'::[1,0]])
div
float
div
float
—> int
div
(float
, float
) —> int
int
div
int
—> int
div
(int
, int
) —> int
float
div
int
—> int
div
(float
, int
) —> int
int
div
float
—> int
div
(int
, float
) —> int
Returns the truncation of the division of the left-hand operand by the right-hand operand.
int var0 <- 40.1 div 4.5; // var0 equals 8
int var1 <- 40 div 3; // var1 equals 13
int var2 <- 40.5 div 3; // var2 equals 13
int var3 <- 40 div 4.1; // var3 equals 9
mod,
dxf_file
dxf_file
(string
) —> file
Constructs a file of type dxf. Allowed extensions are limited to dxf
edge
edge
(pair
) —> unknown
edge
(unknown
) —> unknown
unknown
edge
unknown
—> unknown
edge
(unknown
, unknown
) —> unknown
pair
edge
float
—> unknown
edge
(pair
, float
) —> unknown
unknown
edge
float
—> unknown
edge
(unknown
, float
) —> unknown
edge
(unknown
, unknown
, unknown
) —> unknown
edge
(unknown
, unknown
, float
) —> unknown
edge
(pair
, unknown
, float
) —> unknown
edge
(unknown
, unknown
, unknown
, float
) —> unknown
edge_between
graph
edge_between
pair
—> unknown
edge_between
(graph
, pair
) —> unknown
returns the edge linking two nodes
unknown var0 <- graphFromMap edge_between node1::node2; // var0 equals edge1
edge_betweenness
edge_betweenness
(graph
) —> map
returns a map containing for each edge (key), its betweenness centrality (value): number of shortest paths passing through each edge
graph graphEpidemio <- graph([]);
map var1 <- edge_betweenness(graphEpidemio); // var1 equals the edge betweenness index of the graph
edges
edges
(container
) —> container
eigenvalues
eigenvalues
(matrix
) —> list<float>
The eigen values (matrix) of the given matrix
list<float> var0 <- eigenvalues(matrix([[5,-3],[6,-4]])); // var0 equals [2.0000000000000004,-0.9999999999999998]
electre_DM
electre_DM
(list<list>
, list<map<string,object>>
, float
) —> int
The index of the best candidate according to a method based on the ELECTRE methods. The principle of the ELECTRE methods is to compare the possible candidates by pair. These methods analyses the possible outranking relation existing between two candidates. An candidate outranks another if this one is at least as good as the other one. The ELECTRE methods are based on two concepts: the concordance and the discordance. The concordance characterizes the fact that, for an outranking relation to be validated, a sufficient majority of criteria should be in favor of this assertion. The discordance characterizes the fact that, for an outranking relation to be validated, none of the criteria in the minority should oppose too strongly this assertion. These two conditions must be true for validating the outranking assertion. More information about the ELECTRE methods can be found in [http://www.springerlink.com/content/g367r44322876223/ Figueira, J., Mousseau, V., Roy, B.: ELECTRE Methods. In: Figueira, J., Greco, S., and Ehrgott, M., (Eds.), Multiple Criteria Decision Analysis: State of the Art Surveys, Springer, New York, 133–162 (2005)]. The first operand is the list of candidates (a candidate is a list of criterion values); the second operand the list of criterion: A criterion is a map that contains fives elements: a name, a weight, a preference value (p), an indifference value (q) and a veto value (v). The preference value represents the threshold from which the difference between two criterion values allows to prefer one vector of values over another. The indifference value represents the threshold from which the difference between two criterion values is considered significant. The veto value represents the threshold from which the difference between two criterion values disqualifies the candidate that obtained the smaller value; the last operand is the fuzzy cut.
int var0 <- electre_DM([[1.0, 7.0],[4.0,2.0],[3.0, 3.0]], [["name"::"utility", "weight" :: 2.0,"p"::0.5, "q"::0.0, "s"::1.0, "maximize" :: true],["name"::"price", "weight" :: 1.0,"p"::0.5, "q"::0.0, "s"::1.0, "maximize" :: false]]); // var0 equals 0
weighted_means_DM, promethee_DM, evidence_theory_DM,
ellipse
float
ellipse
float
—> geometry
ellipse
(float
, float
) —> geometry
An ellipse geometry which x-radius is equal to the first operand and y-radius is equal to the second operand
the center of the ellipse is by default the location of the current agent in which has been called this operator.
geometry var0 <- ellipse(10, 10); // var0 equals a geometry as an ellipse of width 10 and height 10.
around, cone, line, link, norm, point, polygon, polyline, rectangle, square, circle, squircle, triangle,
emotion
emotion
(any
) —> emotion
Casts the operand into the type emotion
empty
empty
(container<KeyType,ValueType>
) —> bool
empty
(string
) —> bool
true if the operand is empty, false otherwise.
the empty operator behavior depends on the nature of the operand
bool var0 <- empty([]); // var0 equals true
bool var1 <- empty ('abced'); // var1 equals false
enlarged_by
Same signification as +
envelope
envelope
(unknown
) —> geometry
A 3D geometry that represents the box that surrounds the geometries or the surface described by the arguments. More general than geometry(arguments).envelope, as it allows to pass int, double, point, image files, shape files, asc files, or any list combining these arguments, in which case the envelope will be correctly expanded. If an envelope cannot be determined from the arguments, a default one of dimensions (0,100, 0, 100, 0, 100) is returned
eval_gaml
eval_gaml
(string
) —> unknown
evaluates the given GAML string.
unknown var0 <- eval_gaml("2+3"); // var0 equals 5
eval_when
eval_when
(BDIPlan
) —> bool
evaluate the facet when of a given plan
eval_when(plan1)
even
even
(int
) —> bool
Returns true if the operand is even and false if it is odd.
bool var0 <- even (3); // var0 equals false
bool var1 <- even(-12); // var1 equals true
every
every
(int
) —> bool
every
(any expression
) —> bool
msi.gama.util.GamaDateInterval
every
any expression
—> msi.gama.util.IList<msi.gama.util.GamaDate>
every
(msi.gama.util.GamaDateInterval
, any expression
) —> msi.gama.util.IList<msi.gama.util.GamaDate>
container
every
int
—> container
every
(container
, int
) —> container
true every operand * cycle, false otherwise
applies a step to an interval of dates defined by ‘date1 to date2’
expects a frequency (expressed in seconds of simulated time) as argument. Will return true every time the current_date matches with this frequency
Retrieves elements from the first argument every step
(second argument) elements. Raises an error if the step is negative or equal to zero
the value of the every operator depends on the cycle. It can be used to do something every x cycle.Used to do something at regular intervals of time. Can be used in conjunction with ‘since’, ‘after’, ‘before’, ‘until’ or ‘between’, so that this computation only takes place in the temporal segment defined by these operators. In all cases, the starting_date of the model is used as a reference starting point
if every(2) {write "the cycle number is even";}
else {write "the cycle number is odd";}
(date('2000-01-01') to date('2010-01-01')) every (#month) // builds an interval between these two dates which contains all the monthly dates starting from the beginning of the interval
reflex when: every(2#days) since date('2000-01-01') { .. }
state a { transition to: b when: every(2#mn);} state b { transition to: a when: every(30#s);} // This oscillatory behavior will use the starting_date of the model as its starting point in time
every_cycle
Same signification as every
evidence_theory_DM
list<list>
evidence_theory_DM
list<map<string,object>>
—> int
evidence_theory_DM
(list<list>
, list<map<string,object>>
) —> int
evidence_theory_DM
(list<list>
, list<map<string,object>>
, bool
) —> int
The index of the best candidate according to a method based on the Evidence theory. This theory, which was proposed by Shafer ([http://www.glennshafer.com/books/amte.html Shafer G (1976) A mathematical theory of evidence, Princeton University Press]), is based on the work of Dempster ([http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aoms/1177698950 Dempster A (1967) Upper and lower probabilities induced by multivalued mapping. Annals of Mathematical Statistics, vol. 38, pp. 325–339]) on lower and upper probability distributions. The first operand is the list of candidates (a candidate is a list of criterion values); the second operand the list of criterion: A criterion is a map that contains seven elements: a name, a first threshold s1, a second threshold s2, a value for the assertion “this candidate is the best” at threshold s1 (v1p), a value for the assertion “this candidate is the best” at threshold s2 (v2p), a value for the assertion “this candidate is not the best” at threshold s1 (v1c), a value for the assertion “this candidate is not the best” at threshold s2 (v2c). v1p, v2p, v1c and v2c have to been defined in order that: v1p + v1c <= 1.0; v2p + v2c <= 1.0.; the last operand allows to use a simple version of this multi-criteria decision making method (simple if true)
int var0 <- evidence_theory_DM([[1.0, 7.0],[4.0,2.0],[3.0, 3.0]], [["name"::"utility", "s1" :: 0.0,"s2"::1.0, "v1p"::0.0, "v2p"::1.0, "v1c"::0.0, "v2c"::0.0, "maximize" :: true],["name"::"price", "s1" :: 0.0,"s2"::1.0, "v1p"::0.0, "v2p"::1.0, "v1c"::0.0, "v2c"::0.0, "maximize" :: true]], true); // var0 equals 0
weighted_means_DM, electre_DM,
exp
exp
(float
) —> float
exp
(int
) —> float
Returns Euler’s number e raised to the power of the operand.
float var0 <- exp (0); // var0 equals 1.0
ln,
fact
fact
(int
) —> float
Returns the factorial of the operand.
float var0 <- fact(4); // var0 equals 24
farthest_point_to
geometry
farthest_point_to
point
—> point
farthest_point_to
(geometry
, point
) —> point
the farthest point of the left-operand to the left-point.
point var0 <- geom farthest_point_to(pt); // var0 equals the farthest point of geom to pt
any_location_in, any_point_in, closest_points_with, points_at,
farthest_to
container<agent>
farthest_to
geometry
—> geometry
farthest_to
(container<agent>
, geometry
) —> geometry
An agent or a geometry among the left-operand list of agents, species or meta-population (addition of species), the farthest to the operand (casted as a geometry).
the distance is computed in the topology of the calling agent (the agent in which this operator is used), with the distance algorithm specific to the topology.
geometry var0 <- [ag1, ag2, ag3] closest_to(self); // var0 equals return the farthest agent among ag1, ag2 and ag3 to the agent applying the operator.
(species1 + species2) closest_to self
neighbors_at, neighbors_of, inside, overlapping, agents_overlapping, agents_inside, agent_closest_to, closest_to, agent_farthest_to,
file
file
(string
) —> file
string
file
container
—> file
file
(string
, container
) —> file
opens a file in read only mode, creates a GAML file object, and tries to determine and store the file content in the contents attribute. Creates a file in read/write mode, setting its contents to the container passed in parameter
The file should have a supported extension, see file type definition for supported file extensions.The type of container to pass will depend on the type of file (see the management of files in the documentation). Can be used to copy files since files are considered as containers. For example: save file(‘image_copy.png’, file(‘image.png’)); will copy image.png to image_copy.png
let fileT type: file value: file("../includes/Stupid_Cell.Data");
// fileT represents the file "../includes/Stupid_Cell.Data"
// fileT.contents here contains a matrix storing all the data of the text file
file_exists
file_exists
(string
) —> bool
Test whether the parameter is the path to an existing file.
first
first
(string
) —> string
first
(container<KeyType,ValueType>
) —> ValueType
int
first
container
—> container
first
(int
, container
) —> container
the first value of the operand
the first operator behavior depends on the nature of the operand
string var0 <- first ('abce'); // var0 equals 'a'
int var1 <- first ([1, 2, 3]); // var1 equals 1
last,
first_of
Same signification as first
first_with
container
first_with
any expression
—> unknown
first_with
(container
, any expression
) —> unknown
the first element of the left-hand operand that makes the right-hand operand evaluate to true.
in the right-hand operand, the keyword each can be used to represent, in turn, each of the right-hand operand elements.
unknown var4 <- [1::2, 3::4, 5::6] first_with (each >= 4); // var4 equals 4
unknown var5 <- [1::2, 3::4, 5::6].pairs first_with (each.value >= 4); // var5 equals 3::4
unknown var0 <- [1,2,3,4,5,6,7,8] first_with (each > 3); // var0 equals 4
unknown var2 <- g2 first_with (length(g2 out_edges_of each) = 0); // var2 equals node9
unknown var3 <- (list(node) first_with (round(node(each).location.x) > 32); // var3 equals node2
flip
flip
(float
) —> bool
true or false given the probability represented by the operand
bool var0 <- flip (0.66666); // var0 equals 2/3 chances to return true.
rnd,
float
float
(any
) —> float
Casts the operand into the type float
floor
floor
(float
) —> float
Maps the operand to the largest previous following integer, i.e. the largest integer not greater than x.
float var0 <- floor(3); // var0 equals 3.0
float var1 <- floor(3.5); // var1 equals 3.0
float var2 <- floor(-4.7); // var2 equals -5.0
folder
folder
(string
) —> file
opens an existing repository
folder("../includes/")
file dirT <- folder("../includes/");
// dirT represents the repository "../includes/"
// dirT.contents here contains the list of the names of included files
font
font
(string
, int
, int
) —> font
Creates a new font, by specifying its name (either a font face name like ‘Lucida Grande Bold’ or ‘Helvetica’, or a logical name like ‘Dialog’, ‘SansSerif’, ‘Serif’, etc.), a size in points and a style, either #bold, #italic or #plain or a combination (addition) of them.
font var0 <- font ('Helvetica Neue',12, #bold + #italic); // var0 equals a bold and italic face of the Helvetica Neue family
frequency_of
container
frequency_of
any expression
—> map
frequency_of
(container
, any expression
) —> map
Returns a map with keys equal to the application of the right-hand argument (like collect) and values equal to the frequency of this key (i.e. how many times it has been obtained)
map var0 <- [ag1, ag2, ag3, ag4] frequency_of each.size; // var0 equals the different sizes as keys and the number of agents of this size as values
from
Same signification as since
fuzzy_kappa
fuzzy_kappa
(list<agent>
, list
, list
, list<float>
, list
, matrix<float>
, float
) —> float
fuzzy_kappa
(list<agent>
, list
, list
, list<float>
, list
, matrix<float>
, float
, list
) —> float
fuzzy kappa indicator for 2 map comparisons: fuzzy_kappa(agents_list,list_vals1,list_vals2, output_similarity_per_agents,categories,fuzzy_categories_matrix, fuzzy_distance, weights). Reference: Visser, H., and T. de Nijs, 2006. The map comparison kit, Environmental Modelling & Software, 21 fuzzy kappa indicator for 2 map comparisons: fuzzy_kappa(agents_list,list_vals1,list_vals2, output_similarity_per_agents,categories,fuzzy_categories_matrix, fuzzy_distance). Reference: Visser, H., and T. de Nijs, 2006. The map comparison kit, Environmental Modelling & Software, 21
fuzzy_kappa([ag1, ag2, ag3, ag4, ag5],[cat1,cat1,cat2,cat3,cat2],[cat2,cat1,cat2,cat1,cat2], similarity_per_agents,[cat1,cat2,cat3],[[1,0,0],[0,1,0],[0,0,1]], 2, [1.0,3.0,2.0,2.0,4.0])
fuzzy_kappa([ag1, ag2, ag3, ag4, ag5],[cat1,cat1,cat2,cat3,cat2],[cat2,cat1,cat2,cat1,cat2], similarity_per_agents,[cat1,cat2,cat3],[[1,0,0],[0,1,0],[0,0,1]], 2)
fuzzy_kappa_sim
fuzzy_kappa_sim
(list<agent>
, list
, list
, list
, list<float>
, list
, matrix<float>
, float
) —> float
fuzzy_kappa_sim
(list<agent>
, list
, list
, list
, list<float>
, list
, matrix<float>
, float
, list
) —> float
fuzzy kappa simulation indicator for 2 map comparisons: fuzzy_kappa_sim(agents_list,list_vals1,list_vals2, output_similarity_per_agents,fuzzy_transitions_matrix, fuzzy_distance). Reference: Jasper van Vliet, Alex Hagen-Zanker, Jelle Hurkens, Hedwig van Delden, A fuzzy set approach to assess the predictive accuracy of land use simulations, Ecological Modelling, 24 July 2013, Pages 32-42, ISSN 0304-3800, fuzzy kappa simulation indicator for 2 map comparisons: fuzzy_kappa_sim(agents_list,list_vals1,list_vals2, output_similarity_per_agents,fuzzy_transitions_matrix, fuzzy_distance, weights). Reference: Jasper van Vliet, Alex Hagen-Zanker, Jelle Hurkens, Hedwig van Delden, A fuzzy set approach to assess the predictive accuracy of land use simulations, Ecological Modelling, 24 July 2013, Pages 32-42, ISSN 0304-3800,
fuzzy_kappa_sim([ag1, ag2, ag3, ag4, ag5], [cat1,cat1,cat2,cat3,cat2],[cat2,cat1,cat2,cat1,cat2], similarity_per_agents,[cat1,cat2,cat3],[[1,0,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,0,1]], 2)
fuzzy_kappa_sim([ag1, ag2, ag3, ag4, ag5], [cat1,cat1,cat2,cat3,cat2],[cat2,cat1,cat2,cat1,cat2], similarity_per_agents,[cat1,cat2,cat3],[[1,0,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,0,1]], 2,[1.0,3.0,2.0,2.0,4.0])
gaml_file
gaml_file
(string
) —> file
Constructs a file of type gaml. Allowed extensions are limited to gaml, experiment
gamma_index
gamma_index
(graph
) —> float
returns the gamma index of the graph (A measure of connectivity that considers the relationship between the number of observed links and the number of possible links: gamma = e/(3 *
(v - 2)) - for planar graph.
graph graphEpidemio <- graph([]);
float var1 <- gamma_index(graphEpidemio); // var1 equals the gamma index of the graph
alpha_index, beta_index, nb_cycles, connectivity_index,
gamma_rnd
float
gamma_rnd
float
—> float
gamma_rnd
(float
, float
) —> float
returns a random value from a gamma distribution with specified values of the shape and scale parameters
gamma_rnd(10.0,5.0)
gauss
gauss
(point
) —> float
float
gauss
float
—> float
gauss
(float
, float
) —> float
A value from a normally distributed random variable with expected value (mean) and variance (standardDeviation). The probability density function of such a variable is a Gaussian. A value from a normally distributed random variable with expected value (mean) and variance (standardDeviation). The probability density function of such a variable is a Gaussian.
float var0 <- gauss(0,0.3); // var0 equals 0.22354
float var1 <- gauss(0,0.3); // var1 equals -0.1357
float var2 <- gauss({0,0.3}); // var2 equals 0.22354
float var3 <- gauss({0,0.3}); // var3 equals -0.1357
skew_gauss, truncated_gauss, poisson,
generate_barabasi_albert
generate_barabasi_albert
(container<agent>
, species
, int
, bool
) —> graph
generate_barabasi_albert
(species
, species
, int
, int
, bool
) —> graph
returns a random scale-free network (following Barabasi-Albert (BA) model). returns a random scale-free network (following Barabasi-Albert (BA) model).
The Barabasi-Albert (BA) model is an algorithm for generating random scale-free networks using a preferential attachment mechanism. A scale-free network is a network whose degree distribution follows a power law, at least asymptotically.Such networks are widely observed in natural and human-made systems, including the Internet, the world wide web, citation networks, and some social networks. [From Wikipedia article]The map operand should includes following elements:The Barabasi-Albert (BA) model is an algorithm for generating random scale-free networks using a preferential attachment mechanism. A scale-free network is a network whose degree distribution follows a power law, at least asymptotically.Such networks are widely observed in natural and human-made systems, including the Internet, the world wide web, citation networks, and some social networks. [From Wikipedia article]The map operand should includes following elements:
graph<yourNodeSpecy,yourEdgeSpecy> graphEpidemio <- generate_barabasi_albert(
yourNodeSpecy,
yourEdgeSpecy,
3,
5,
true);
graph<yourNodeSpecy,yourEdgeSpecy> graphEpidemio <- generate_barabasi_albert(
yourListOfNodes,
yourEdgeSpecy,
3,
5,
true);
generate_complete_graph
generate_complete_graph
(container<agent>
, species
, bool
) —> graph
generate_complete_graph
(container<agent>
, species
, float
, bool
) —> graph
generate_complete_graph
(species
, species
, int
, bool
) —> graph
generate_complete_graph
(species
, species
, int
, float
, bool
) —> graph
returns a fully connected graph. returns a fully connected graph. returns a fully connected graph. returns a fully connected graph.
Arguments should include following elements:Arguments should include following elements:Arguments should include following elements:Arguments should include following elements:
graph<myVertexSpecy,myEdgeSpecy> myGraph <- generate_complete_graph(
myListOfNodes,
myEdgeSpecy,
25,
true);
graph<myVertexSpecy,myEdgeSpecy> myGraph <- generate_complete_graph(
myVertexSpecy,
myEdgeSpecy,
10, 25,
true);
graph<myVertexSpecy,myEdgeSpecy> myGraph <- generate_complete_graph(
myVertexSpecy,
myEdgeSpecy,
10,
true);
graph<myVertexSpecy,myEdgeSpecy> myGraph <- generate_complete_graph(
myListOfNodes,
myEdgeSpecy,
true);
generate_barabasi_albert, generate_watts_strogatz,
generate_watts_strogatz
generate_watts_strogatz
(container<agent>
, species
, float
, int
, bool
) —> graph
generate_watts_strogatz
(species
, species
, int
, float
, int
, bool
) —> graph
returns a random small-world network (following Watts-Strogatz model). returns a random small-world network (following Watts-Strogatz model).
The Watts-Strogatz model is a random graph generation model that produces graphs with small-world properties, including short average path lengths and high clustering.A small-world network is a type of graph in which most nodes are not neighbors of one another, but most nodes can be reached from every other by a small number of hops or steps. [From Wikipedia article]The map operand should includes following elements:The Watts-Strogatz model is a random graph generation model that produces graphs with small-world properties, including short average path lengths and high clustering.A small-world network is a type of graph in which most nodes are not neighbors of one another, but most nodes can be reached from every other by a small number of hops or steps. [From Wikipedia article]The map operand should includes following elements:
graph<myVertexSpecy,myEdgeSpecy> myGraph <- generate_watts_strogatz(
myVertexSpecy,
myEdgeSpecy,
2,
0.3,
2,
true);
graph<myVertexSpecy,myEdgeSpecy> myGraph <- generate_watts_strogatz(
myListOfNodes,
myEdgeSpecy,
0.3,
2,
true);
geojson_file
geojson_file
(string
) —> file
Constructs a file of type geojson. Allowed extensions are limited to json, geojson, geo.json
geometric_mean
geometric_mean
(container
) —> float
the geometric mean of the elements of the operand. See Geometric_mean for more details.
The operator casts all the numerical element of the list into float. The elements that are not numerical are discarded.
float var0 <- geometric_mean ([4.5, 3.5, 5.5, 7.0]); // var0 equals 4.962326343467649
geometry
geometry
(any
) —> geometry
Casts the operand into the type geometry
geometry_collection
geometry_collection
(container<geometry>
) —> geometry
A geometry collection (multi-geometry) composed of the given list of geometries.
geometry var0 <- geometry_collection([{0,0}, {0,10}, {10,10}, {10,0}]); // var0 equals a geometry composed of the 4 points (multi-point).
around, circle, cone, link, norm, point, polygone, rectangle, square, triangle, line,
get
geometry
get
string
—> unknown
get
(geometry
, string
) —> unknown
agent
get
string
—> unknown
get
(agent
, string
) —> unknown
Reads an attribute of the specified geometry (left operand). The attribute name is specified by the right operand. Reads an attribute of the specified agent (left operand). The attribute name is specified by the right operand.
string geom_area <- a_geometry get('area'); // reads then 'area' attribute of 'a_geometry' variable then assigns the returned value to the geom_area variable
string agent_name <- an_agent get('name'); // reads then 'name' attribute of an_agent then assigns the returned value to the agent_name variable
get_about
get_about
(emotion
) —> predicate
get the about value of the given emotion
get_about(emotion)
get_agent
get_agent
(msi.gaml.architecture.simplebdi.SocialLink
) —> agent
get the agent value of the given social link
get_agent(social_link1)
get_agent_cause
get_agent_cause
(emotion
) —> agent
get_agent_cause
(predicate
) —> agent
get the agent cause value of the given emotion
get_agent_cause(emotion)
get_decay
get_decay
(emotion
) —> float
get the decay value of the given emotion
get_decay(emotion)
get_dominance
get_dominance
(msi.gaml.architecture.simplebdi.SocialLink
) —> float
get the dominance value of the given social link
get_dominance(social_link1)
get_familiarity
get_familiarity
(msi.gaml.architecture.simplebdi.SocialLink
) —> float
get the familiarity value of the given social link
get_familiarity(social_link1)
get_intensity
get_intensity
(emotion
) —> float
get the intensity value of the given emotion
emotion set_intensity 12
get_lifetime
get_lifetime
(predicate
) —> int
get_liking
get_liking
(msi.gaml.architecture.simplebdi.SocialLink
) —> float
get the liking value of the given social link
get_liking(social_link1)
get_praiseworthiness
get_praiseworthiness
(predicate
) —> float
get_priority
get_priority
(predicate
) —> float
get_solidarity
get_solidarity
(msi.gaml.architecture.simplebdi.SocialLink
) —> float
get the solidarity value of the given social link
get_solidarity(social_link1)
get_super_intention
get_super_intention
(predicate
) —> predicate
gif_file
gif_file
(string
) —> file
Constructs a file of type gif. Allowed extensions are limited to gif
gini
gini
(list<float>
) —> float
float var0 <- gini([1.0, 0.5, 2.0]); // var0 equals the gini index computed
graph
graph
(any
) —> graph
Casts the operand into the type graph
grayscale
grayscale
(rgb
) —> rgb
Converts rgb color to grayscale value
r=red, g=green, b=blue. Between 0 and 255 and gray = 0.299 *
red + 0.587 *
green + 0.114 *
blue (Photoshop value)
rgb var0 <- grayscale (rgb(255,0,0)); // var0 equals to a dark grey
grid_at
species
grid_at
point
—> agent
grid_at
(species
, point
) —> agent
returns the cell of the grid (right-hand operand) at the position given by the right-hand operand
If the left-hand operand is a point of floats, it is used as a point of ints.
agent var0 <- grid_cell grid_at {1,2}; // var0 equals the agent grid_cell with grid_x=1 and grid_y = 2
grid_cells_to_graph
grid_cells_to_graph
(container
) —> graph
creates a graph from a list of cells (operand). An edge is created between neighbors.
my_cell_graph<-grid_cells_to_graph(cells_list)
grid_file
grid_file
(string
) —> file
Constructs a file of type grid. Allowed extensions are limited to asc, tif
group_by
container
group_by
any expression
—> map
group_by
(container
, any expression
) —> map
Returns a map, where the keys take the possible values of the right-hand operand and the map values are the list of elements of the left-hand operand associated to the key value
in the right-hand operand, the keyword each can be used to represent, in turn, each of the right-hand operand elements.
map var0 <- [1,2,3,4,5,6,7,8] group_by (each > 3); // var0 equals [false::[1, 2, 3], true::[4, 5, 6, 7, 8]]
map var1 <- g2 group_by (length(g2 out_edges_of each) ); // var1 equals [ 0::[node9, node7, node10, node8, node11], 1::[node6], 2::[node5], 3::[node4]]
map var2 <- (list(node) group_by (round(node(each).location.x)); // var2 equals [32::[node5], 21::[node1], 4::[node0], 66::[node2], 96::[node3]]
map var3 <- [1::2, 3::4, 5::6] group_by (each > 4); // var3 equals [false::[2, 4], true::[6]]
harmonic_mean
harmonic_mean
(container
) —> float
the harmonic mean of the elements of the operand. See Harmonic_mean for more details.
The operator casts all the numerical element of the list into float. The elements that are not numerical are discarded.
float var0 <- harmonic_mean ([4.5, 3.5, 5.5, 7.0]); // var0 equals 4.804159445407279
hexagon
hexagon
(point
) —> geometry
hexagon
(float
) —> geometry
A hexagon geometry which the given with and height
the center of the hexagon is by default the location of the current agent in which has been called this operator.the center of the hexagon is by default the location of the current agent in which has been called this operator.
geometry var0 <- hexagon({10,5}); // var0 equals a geometry as a hexagon of width of 10 and height of 5.
geometry var1 <- hexagon(10); // var1 equals a geometry as a hexagon of width of 10 and height of 10.
around, circle, cone, line, link, norm, point, polygon, polyline, rectangle, triangle,
hierarchical_clustering
container<agent>
hierarchical_clustering
float
—> container
hierarchical_clustering
(container<agent>
, float
) —> container
A tree (list of list) contained groups of agents clustered by distance considering a distance min between two groups.
use of hierarchical clustering with Minimum for linkage criterion between two groups of agents.
container var0 <- [ag1, ag2, ag3, ag4, ag5] hierarchical_clustering 20.0; // var0 equals for example, can return [[[ag1],[ag3]], [ag2], [[[ag4],[ag5]],[ag6]]
simple_clustering_by_distance,
hsb
hsb
(float
, float
, float
) —> rgb
hsb
(float
, float
, float
, int
) —> rgb
hsb
(float
, float
, float
, float
) —> rgb
Converts hsb (h=hue, s=saturation, b=brightness) value to Gama color
h,s and b components should be floating-point values between 0.0 and 1.0 and when used alpha should be an integer (between 0 and 255) or a float (between 0 and 1) . Examples: Red=(0.0,1.0,1.0), Yellow=(0.16,1.0,1.0), Green=(0.33,1.0,1.0), Cyan=(0.5,1.0,1.0), Blue=(0.66,1.0,1.0), Magenta=(0.83,1.0,1.0)
rgb var0 <- hsb (0.5,1.0,1.0,0.0); // var0 equals rgb("cyan",0)
rgb var1 <- hsb (0.0,1.0,1.0); // var1 equals rgb("red")
rgb,
hypot
hypot
(float
, float
, float
, float
) —> float
Returns sqrt(x2 +y2) without intermediate overflow or underflow.
float var0 <- hypot(0,1,0,1); // var0 equals sqrt(2)
image_file
image_file
(string
) —> file
Constructs a file of type image. Allowed extensions are limited to tiff, jpg, jpeg, png, pict, bmp
in
unknown
in
container
—> bool
in
(unknown
, container
) —> bool
string
in
string
—> bool
in
(string
, string
) —> bool
true if the right operand contains the left operand, false otherwise
the definition of in depends on the container
bool var0 <- 2 in [1,2,3,4,5,6]; // var0 equals true
bool var1 <- 7 in [1,2,3,4,5,6]; // var1 equals false
bool var2 <- 3 in [1::2, 3::4, 5::6]; // var2 equals false
bool var3 <- 6 in [1::2, 3::4, 5::6]; // var3 equals true
bool var4 <- 'bc' in 'abcded'; // var4 equals true
in_degree_of
graph
in_degree_of
unknown
—> int
in_degree_of
(graph
, unknown
) —> int
returns the in degree of a vertex (right-hand operand) in the graph given as left-hand operand.
int var1 <- graphFromMap in_degree_of (node(3)); // var1 equals 2
in_edges_of
graph
in_edges_of
unknown
—> container
in_edges_of
(graph
, unknown
) —> container
returns the list of the in-edges of a vertex (right-hand operand) in the graph given as left-hand operand.
container var1 <- graphFromMap in_edges_of node({12,45}); // var1 equals [LineString]
indented_by
string
indented_by
int
—> string
indented_by
(string
, int
) —> string
Converts a (possibly multiline) string by indenting it by a number – specified by the second operand – of tabulations to the right
index_by
container
index_by
any expression
—> map
index_by
(container
, any expression
) —> map
produces a new map from the evaluation of the right-hand operand for each element of the left-hand operand
map var0 <- [1,2,3,4,5,6,7,8] index_by (each - 1); // var0 equals [0::1, 1::2, 2::3, 3::4, 4::5, 5::6, 6::7, 7::8]
index_of
container
index_of
unknown
—> int
index_of
(container
, unknown
) —> int
map
index_of
unknown
—> unknown
index_of
(map
, unknown
) —> unknown
matrix
index_of
unknown
—> point
index_of
(matrix
, unknown
) —> point
string
index_of
string
—> int
index_of
(string
, string
) —> int
species
index_of
unknown
—> int
index_of
(species
, unknown
) —> int
the index of the first occurence of the right operand in the left operand container the index of the first occurence of the right operand in the left operand container
The definition of index_of and the type of the index depend on the container
int var1 <- [1,2,3,4,5,6] index_of 4; // var1 equals 3
int var2 <- [4,2,3,4,5,4] index_of 4; // var2 equals 0
point var3 <- matrix([[1,2,3],[4,5,6]]) index_of 4; // var3 equals {1.0,0.0}
int var4 <- "abcabcabc" index_of "ca"; // var4 equals 2
unknown var0 <- [1::2, 3::4, 5::6] index_of 4; // var0 equals 3
inside
container<agent>
inside
geometry
—> list<geometry>
inside
(container<agent>
, geometry
) —> list<geometry>
A list of agents or geometries among the left-operand list, species or meta-population (addition of species), covered by the operand (casted as a geometry).
list<geometry> var0 <- [ag1, ag2, ag3] inside(self); // var0 equals the agents among ag1, ag2 and ag3 that are covered by the shape of the right-hand argument.
list<geometry> var1 <- (species1 + species2) inside (self); // var1 equals the agents among species species1 and species2 that are covered by the shape of the right-hand argument.
neighbors_at, neighbors_of, closest_to, overlapping, agents_overlapping, agents_inside, agent_closest_to,
int
int
(any
) —> int
Casts the operand into the type int
inter
container
inter
container
—> container
inter
(container
, container
) —> container
geometry
inter
geometry
—> geometry
inter
(geometry
, geometry
) —> geometry
the intersection of the two operands A geometry resulting from the intersection between the two geometries
both containers are transformed into sets (so without duplicated element, cf. remove_deplicates operator) before the set intersection is computed.
container var0 <- [1::2, 3::4, 5::6] inter [2,4]; // var0 equals [2,4]
container var1 <- [1::2, 3::4, 5::6] inter [1,3]; // var1 equals []
container var2 <- matrix([[1,2,3],[4,5,4]]) inter [3,4]; // var2 equals [3,4]
container var3 <- [1,2,3,4,5,6] inter [2,4]; // var3 equals [2,4]
container var4 <- [1,2,3,4,5,6] inter [0,8]; // var4 equals []
geometry var5 <- square(10) inter circle(5); // var5 equals circle(5)
remove_duplicates, union, +, -,
interleave
interleave
(container
) —> container
a new list containing the interleaved elements of the containers contained in the operand
the operand should be a list of lists of elements. The result is a list of elements.
container var0 <- interleave([1,2,4,3,5,7,6,8]); // var0 equals [1,2,4,3,5,7,6,8]
container var1 <- interleave([['e11','e12','e13'],['e21','e22','e23'],['e31','e32','e33']]); // var1 equals ['e11','e21','e31','e12','e22','e32','e13','e23','e33']
internal_at
agent
internal_at
container
—> unknown
internal_at
(agent
, container
) —> unknown
geometry
internal_at
container
—> unknown
internal_at
(geometry
, container
) —> unknown
container<KeyType,ValueType>
internal_at
list<KeyType>
—> ValueType
internal_at
(container<KeyType,ValueType>
, list<KeyType>
) —> ValueType
For internal use only. Corresponds to the implementation, for agents, of the access to containers with [index] For internal use only. Corresponds to the implementation, for geometries, of the access to containers with [index] For internal use only. Corresponds to the implementation of the access to containers with [index]
at,
internal_integrated_value
any expression
internal_integrated_value
any expression
—> container
internal_integrated_value
(any expression
, any expression
) —> container
For internal use only. Corresponds to the implementation, for agents, of the access to containers with [index]
internal_zero_order_equation
internal_zero_order_equation
(any expression
) —> float
intersection
Same signification as inter
intersects
geometry
intersects
geometry
—> bool
intersects
(geometry
, geometry
) —> bool
A boolean, equal to true if the left-geometry (or agent/point) intersects the right-geometry (or agent/point).
bool var0 <- square(5) intersects {10,10}; // var0 equals false
disjoint_from, crosses, overlaps, partially_overlaps, touches,
inverse
inverse
(matrix
) —> matrix<float>
The inverse matrix of the given matrix. If no inverse exists, returns a matrix that has properties that resemble that of an inverse.
matrix<float> var0 <- inverse(matrix([[5,-3],[6,-4]])); // var0 equals [2.0000000000000004,-0.9999999999999998]
inverse_distance_weighting
Same signification as IDW
is
unknown
is
any expression
—> bool
is
(unknown
, any expression
) —> bool
returns true if the left operand is of the right operand type, false otherwise
bool var0 <- 0 is int; // var0 equals true
bool var1 <- an_agent is node; // var1 equals true
bool var2 <- 1 is float; // var2 equals false
is_csv
is_csv
(any
) —> bool
Tests whether the operand is a csv file.
is_dxf
is_dxf
(any
) —> bool
Tests whether the operand is a dxf file.
is_finite
is_finite
(float
) —> bool
Returns whether the argument is a finite number or not
bool var0 <- is_finite(4.66); // var0 equals true
bool var1 <- is_finite(#infinity); // var1 equals false
is_gaml
is_gaml
(any
) —> bool
Tests whether the operand is a gaml file.
is_geojson
is_geojson
(any
) —> bool
Tests whether the operand is a geojson file.
is_gif
is_gif
(any
) —> bool
Tests whether the operand is a gif file.
is_grid
is_grid
(any
) —> bool
Tests whether the operand is a grid file.
is_image
is_image
(any
) —> bool
Tests whether the operand is a image file.
is_json
is_json
(any
) —> bool
Tests whether the operand is a json file.
is_number
is_number
(string
) —> bool
is_number
(float
) —> bool
tests whether the operand represents a numerical value Returns whether the argument is a real number or not
Note that the symbol . should be used for a float value (a string with , will not be considered as a numeric value). Symbols e and E are also accepted. A hexadecimal value should begin with #.
bool var0 <- is_number("test"); // var0 equals false
bool var1 <- is_number("123.56"); // var1 equals true
bool var2 <- is_number("-1.2e5"); // var2 equals true
bool var3 <- is_number("1,2"); // var3 equals false
bool var4 <- is_number("#12FA"); // var4 equals true
bool var5 <- is_number(4.66); // var5 equals true
bool var6 <- is_number(#infinity); // var6 equals true
bool var7 <- is_number(#nan); // var7 equals false
is_obj
is_obj
(any
) —> bool
Tests whether the operand is a obj file.
is_osm
is_osm
(any
) —> bool
Tests whether the operand is a osm file.
is_pgm
is_pgm
(any
) —> bool
Tests whether the operand is a pgm file.
is_property
is_property
(any
) —> bool
Tests whether the operand is a property file.
is_R
is_R
(any
) —> bool
Tests whether the operand is a R file.
is_shape
is_shape
(any
) —> bool
Tests whether the operand is a shape file.
is_skill
unknown
is_skill
string
—> bool
is_skill
(unknown
, string
) —> bool
returns true if the left operand is an agent whose species implements the right-hand skill name
bool var0 <- agentA is_skill 'moving'; // var0 equals true
is_svg
is_svg
(any
) —> bool
Tests whether the operand is a svg file.
is_text
is_text
(any
) —> bool
Tests whether the operand is a text file.
is_threeds
is_threeds
(any
) —> bool
Tests whether the operand is a threeds file.
is_URL
is_URL
(any
) —> bool
Tests whether the operand is a URL file.
is_xml
is_xml
(any
) —> bool
Tests whether the operand is a xml file.
json_file
json_file
(string
) —> file
Constructs a file of type json. Allowed extensions are limited to json
kappa
kappa
(list
, list
, list
) —> float
kappa
(list
, list
, list
, list
) —> float
kappa indicator for 2 map comparisons: kappa(list_vals1,list_vals2,categories). Reference: Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20. kappa indicator for 2 map comparisons: kappa(list_vals1,list_vals2,categories, weights). Reference: Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20.
kappa([cat1,cat1,cat2,cat3,cat2],[cat2,cat1,cat2,cat1,cat2],[cat1,cat2,cat3])
float var1 <- kappa([1,3,5,1,5],[1,1,1,1,5],[1,3,5]); // var1 equals the similarity between 0 and 1
float var2 <- kappa([1,1,1,1,5],[1,1,1,1,5],[1,3,5]); // var2 equals 1.0
kappa([cat1,cat1,cat2,cat3,cat2],[cat2,cat1,cat2,cat1,cat2],[cat1,cat2,cat3], [1.0, 2.0, 3.0, 1.0, 5.0])
kappa_sim
kappa_sim
(list
, list
, list
, list
) —> float
kappa_sim
(list
, list
, list
, list
, list
) —> float
kappa simulation indicator for 2 map comparisons: kappa(list_valsInits,list_valsObs,list_valsSim, categories). Reference: van Vliet, J., Bregt, A.K. & Hagen-Zanker, A. (2011). Revisiting Kappa to account for change in the accuracy assessment of land-use change models, Ecological Modelling 222(8). kappa simulation indicator for 2 map comparisons: kappa(list_valsInits,list_valsObs,list_valsSim, categories, weights). Reference: van Vliet, J., Bregt, A.K. & Hagen-Zanker, A. (2011). Revisiting Kappa to account for change in the accuracy assessment of land-use change models, Ecological Modelling 222(8)
kappa([cat1,cat1,cat2,cat2,cat2],[cat2,cat1,cat2,cat1,cat3],[cat2,cat1,cat2,cat3,cat3], [cat1,cat2,cat3])
kappa([cat1,cat1,cat2,cat2,cat2],[cat2,cat1,cat2,cat1,cat3],[cat2,cat1,cat2,cat3,cat3], [cat1,cat2,cat3],[1.0, 2.0, 3.0, 1.0, 5.0])
kmeans
list
kmeans
int
—> list<list>
kmeans
(list
, int
) —> list<list>
kmeans
(list
, int
, int
) —> list<list>
returns the list of clusters (list of instance indices) computed with the kmeans++ algorithm from the first operand data according to the number of clusters to split the data into (k) and the maximum number of iterations to run the algorithm for (If negative, no maximum will be used) (maxIt). Usage: kmeans(data,k,maxit) returns the list of clusters (list of instance indices) computed with the kmeans++ algorithm from the first operand data according to the number of clusters to split the data into (k). Usage: kmeans(data,k)
kmeans ([[2,4,5], [3,8,2], [1,1,3], [4,3,4]],2,10)
kmeans ([[2,4,5], [3,8,2], [1,1,3], [4,3,4]],2)
kurtosis
kurtosis
(list
) —> float
returns kurtosis value computed from the operand list of values
kurtosis ([1,2,3,4,5])
last
last
(string
) —> string
last
(container<KeyType,ValueType>
) —> ValueType
int
last
container
—> container
last
(int
, container
) —> container
the last element of the operand
the last operator behavior depends on the nature of the operand
string var0 <- last ('abce'); // var0 equals 'e'
int var1 <- last ([1, 2, 3]); // var1 equals 3
last_index_of
map
last_index_of
unknown
—> unknown
last_index_of
(map
, unknown
) —> unknown
string
last_index_of
string
—> int
last_index_of
(string
, string
) —> int
species
last_index_of
unknown
—> int
last_index_of
(species
, unknown
) —> int
container
last_index_of
unknown
—> int
last_index_of
(container
, unknown
) —> int
matrix
last_index_of
unknown
—> point
last_index_of
(matrix
, unknown
) —> point
the index of the last occurence of the right operand in the left operand container
The definition of last_index_of and the type of the index depend on the container
unknown var0 <- [1::2, 3::4, 5::4] last_index_of 4; // var0 equals 5
int var1 <- "abcabcabc" last_index_of "ca"; // var1 equals 5
int var2 <- [1,2,3,4,5,6] last_index_of 4; // var2 equals 3
int var3 <- [4,2,3,4,5,4] last_index_of 4; // var3 equals 5
point var4 <- matrix([[1,2,3],[4,5,4]]) last_index_of 4; // var4 equals {1.0,2.0}
last_of
Same signification as last
last_with
container
last_with
any expression
—> unknown
last_with
(container
, any expression
) —> unknown
the last element of the left-hand operand that makes the right-hand operand evaluate to true.
in the right-hand operand, the keyword each can be used to represent, in turn, each of the right-hand operand elements.
unknown var4 <- [1::2, 3::4, 5::6] last_with (each >= 4); // var4 equals 6
unknown var5 <- [1::2, 3::4, 5::6].pairs last_with (each.value >= 4); // var5 equals 5::6
unknown var0 <- [1,2,3,4,5,6,7,8] last_with (each > 3); // var0 equals 8
unknown var2 <- g2 last_with (length(g2 out_edges_of each) = 0 ); // var2 equals node11
unknown var3 <- (list(node) last_with (round(node(each).location.x) > 32); // var3 equals node3
layout
graph
layout
string
—> graph
layout
(graph
, string
) —> graph
layout
(graph
, string
, int
) —> graph
layout
(graph
, string
, int
, map<string,unknown>
) —> graph
layouts a GAMA graph.
length
length
(string
) —> int
length
(container<KeyType,ValueType>
) —> int
the number of elements contained in the operand
the length operator behavior depends on the nature of the operand
int var0 <- length ('I am an agent'); // var0 equals 13
int var1 <- length([12,13]); // var1 equals 2
int var2 <- length([]); // var2 equals 0
int var3 <- length(matrix([["c11","c12","c13"],["c21","c22","c23"]])); // var3 equals 6
line
line
(container<geometry>
) —> geometry
container<geometry>
line
float
—> geometry
line
(container<geometry>
, float
) —> geometry
A polyline geometry from the given list of points represented as a cylinder of radius r. A polyline geometry from the given list of points.
geometry var0 <- polyline([{0,0}, {0,10}, {10,10}, {10,0}],0.2); // var0 equals a polyline geometry composed of the 4 points.
geometry var1 <- polyline([{0,0}, {0,10}, {10,10}, {10,0}]); // var1 equals a polyline geometry composed of the 4 points.
around, circle, cone, link, norm, point, polygone, rectangle, square, triangle,
link
geometry
link
geometry
—> geometry
link
(geometry
, geometry
) —> geometry
A dynamic line geometry between the location of the two operands
The geometry of the link is a line between the locations of the two operands, which is built and maintained dynamically
geometry var0 <- link (geom1,geom2); // var0 equals a link geometry between geom1 and geom2.
around, circle, cone, line, norm, point, polygon, polyline, rectangle, square, triangle,
list
list
(any
) —> list
Casts the operand into the type list
list_with
int
list_with
any expression
—> container
list_with
(int
, any expression
) —> container
creates a list with a size provided by the first operand, and filled with the second operand
Note that the right operand should be positive, and that the second one is evaluated for each position in the list.
list,
ln
ln
(int
) —> float
ln
(float
) —> float
Returns the natural logarithm (base e) of the operand.
float var0 <- ln(1); // var0 equals 0.0
float var1 <- ln(exp(1)); // var1 equals 1.0
exp,
load_graph_from_file
load_graph_from_file
(string
) —> graph
string
load_graph_from_file
file
—> graph
load_graph_from_file
(string
, file
) —> graph
string
load_graph_from_file
string
—> graph
load_graph_from_file
(string
, string
) —> graph
load_graph_from_file
(string
, species
, species
) —> graph
load_graph_from_file
(string
, file
, species
, species
) —> graph
load_graph_from_file
(string
, string
, species
, species
) —> graph
load_graph_from_file
(string
, string
, species
, species
, bool
) —> graph
loads a graph from a file returns a graph loaded from a given file encoded into a given format. The last boolean parameter indicates whether the resulting graph will be considered as spatial or not by GAMA
Available formats: “pajek”: Pajek (Slovene word for Spider) is a program, for Windows, for analysis and visualization of large networks. See: http://pajek.imfm.si/doku.php?id=pajek for more details.”lgl”: LGL is a compendium of applications for making the visualization of large networks and trees tractable. See: http://lgl.sourceforge.net/ for more details.”dot”: DOT is a plain text graph description language. It is a simple way of describing graphs that both humans and computer programs can use. See: http://en.wikipedia.org/wiki/DOT_language for more details.”edge”: This format is a simple text file with numeric vertex ids defining the edges.”gexf”: GEXF (Graph Exchange XML Format) is a language for describing complex networks structures, their associated data and dynamics. Started in 2007 at Gephi project by different actors, deeply involved in graph exchange issues, the gexf specifications are mature enough to claim being both extensible and open, and suitable for real specific applications. See: http://gexf.net/format/ for more details.”graphml”: GraphML is a comprehensive and easy-to-use file format for graphs based on XML. See: http://graphml.graphdrawing.org/ for more details.”tlp” or “tulip”: TLP is the Tulip software graph format. See: http://tulip.labri.fr/TulipDrupal/?q=tlp-file-format for more details. “ncol”: This format is used by the Large Graph Layout progra. It is simply a symbolic weighted edge list. It is a simple text file with one edge per line. An edge is defined by two symbolic vertex names separated by whitespace. (The symbolic vertex names themselves cannot contain whitespace.) They might followed by an optional number, this will be the weight of the edge. See: http://bioinformatics.icmb.utexas.edu/lgl for more details.The map operand should includes following elements:Available formats: “pajek”: Pajek (Slovene word for Spider) is a program, for Windows, for analysis and visualization of large networks. See: http://pajek.imfm.si/doku.php?id=pajek for more details.”lgl”: LGL is a compendium of applications for making the visualization of large networks and trees tractable. See: http://lgl.sourceforge.net/ for more details.”dot”: DOT is a plain text graph description language. It is a simple way of describing graphs that both humans and computer programs can use. See: http://en.wikipedia.org/wiki/DOT_language for more details.”edge”: This format is a simple text file with numeric vertex ids defining the edges.”gexf”: GEXF (Graph Exchange XML Format) is a language for describing complex networks structures, their associated data and dynamics. Started in 2007 at Gephi project by different actors, deeply involved in graph exchange issues, the gexf specifications are mature enough to claim being both extensible and open, and suitable for real specific applications. See: http://gexf.net/format/ for more details.”graphml”: GraphML is a comprehensive and easy-to-use file format for graphs based on XML. See: http://graphml.graphdrawing.org/ for more details.”tlp” or “tulip”: TLP is the Tulip software graph format. See: http://tulip.labri.fr/TulipDrupal/?q=tlp-file-format for more details. “ncol”: This format is used by the Large Graph Layout progra. It is simply a symbolic weighted edge list. It is a simple text file with one edge per line. An edge is defined by two symbolic vertex names separated by whitespace. (The symbolic vertex names themselves cannot contain whitespace.) They might followed by an optional number, this will be the weight of the edge. See: http://bioinformatics.icmb.utexas.edu/lgl for more details.The map operand should includes following elements:
graph<myVertexSpecy,myEdgeSpecy> myGraph <- load_graph_from_file(
"pajek",
"example_of_Pajek_file",
myVertexSpecy,
myEdgeSpecy );
graph<myVertexSpecy,myEdgeSpecy> myGraph <- load_graph_from_file(
"pajek",
"./example_of_Pajek_file",
myVertexSpecy,
myEdgeSpecy );
graph<myVertexSpecy,myEdgeSpecy> myGraph <- load_graph_from_file(
"pajek",
"example_of_Pajek_file");
graph<myVertexSpecy,myEdgeSpecy> myGraph <- load_graph_from_file(
"pajek",
"example_of_Pajek_file");
graph<myVertexSpecy,myEdgeSpecy> myGraph <- load_graph_from_file(
"pajek",
"example_of_Pajek_file");
graph<myVertexSpecy,myEdgeSpecy> myGraph <- load_graph_from_file(
"pajek",
"./example_of_Pajek_file",
myVertexSpecy,
myEdgeSpecy);
graph<myVertexSpecy,myEdgeSpecy> myGraph <- load_graph_from_file(
"pajek",
"./example_of_Pajek_file",
myVertexSpecy,
myEdgeSpecy , true);
load_shortest_paths
graph
load_shortest_paths
matrix
—> graph
load_shortest_paths
(graph
, matrix
) —> graph
put in the graph cache the computed shortest paths contained in the matrix (rows: source, columns: target)
graph var0 <- load_shortest_paths(shortest_paths_matrix); // var0 equals return my_graph with all the shortest paths computed
log
log
(float
) —> float
log
(int
) —> float
Returns the logarithm (base 10) of the operand.
float var0 <- log(10); // var0 equals 1.0
float var1 <- log(1); // var1 equals 0.0
ln,
lower_case
lower_case
(string
) —> string
Converts all of the characters in the string operand to lower case
string var0 <- lower_case("Abc"); // var0 equals 'abc'
map
map
(any
) —> map
Casts the operand into the type map
masked_by
geometry
masked_by
container<geometry>
—> geometry
masked_by
(geometry
, container<geometry>
) —> geometry
masked_by
(geometry
, container<geometry>
, int
) —> geometry
geometry var0 <- perception_geom masked_by obstacle_list; // var0 equals the geometry representing the part of perception_geom visible from the agent position considering the list of obstacles obstacle_list.
geometry var1 <- perception_geom masked_by obstacle_list; // var1 equals the geometry representing the part of perception_geom visible from the agent position considering the list of obstacles obstacle_list.
material
float
material
float
—> msi.gama.util.GamaMaterial
material
(float
, float
) —> msi.gama.util.GamaMaterial
Returns
matrix
matrix
(any
) —> matrix
Casts the operand into the type matrix
matrix_with
point
matrix_with
any expression
—> matrix
matrix_with
(point
, any expression
) —> matrix
creates a matrix with a size provided by the first operand, and filled with the second operand
Note that both components of the right operand point should be positive, otherwise an exception is raised.
max
max
(container
) —> unknown
the maximum element found in the operand
the max operator behavior depends on the nature of the operand
unknown var0 <- max ([100, 23.2, 34.5]); // var0 equals 100.0
unknown var1 <- max([{1.0,3.0},{3.0,5.0},{9.0,1.0},{7.0,8.0}]); // var1 equals {9.0,1.0}
min,
max_of
container
max_of
any expression
—> unknown
max_of
(container
, any expression
) —> unknown
the maximum value of the right-hand expression evaluated on each of the elements of the left-hand operand
in the right-hand operand, the keyword each can be used to represent, in turn, each of the right-hand operand elements.
unknown var5 <- [1::2, 3::4, 5::6] max_of (each + 3); // var5 equals 6
unknown var1 <- [1,2,4,3,5,7,6,8] max_of (each * 100 ); // var1 equals 800
graph g2 <- as_edge_graph([{1,5}::{12,45},{12,45}::{34,56}]);
unknown var3 <- g2.vertices max_of (g2 degree_of( each )); // var3 equals 2
unknown var4 <- (list(node) max_of (round(node(each).location.x)); // var4 equals 96
maximal_cliques_of
maximal_cliques_of
(graph
) —> list<list>
returns the maximal cliques of a graph using the Bron-Kerbosch clique detection algorithm: A clique is maximal if it is impossible to enlarge it by adding another vertex from the graph. Note that a maximal clique is not necessarily the biggest clique in the graph.
graph my_graph <- graph([]);
list<list> var1 <- maximal_cliques_of (my_graph); // var1 equals the list of all the maximal cliques as list
mean
mean
(container
) —> unknown
the mean of all the elements of the operand
the elements of the operand are summed (see sum for more details about the sum of container elements ) and then the sum value is divided by the number of elements.
unknown var0 <- mean ([4.5, 3.5, 5.5, 7.0]); // var0 equals 5.125
sum,
mean_deviation
mean_deviation
(container
) —> float
the deviation from the mean of all the elements of the operand. See Mean_deviation for more details.
The operator casts all the numerical element of the list into float. The elements that are not numerical are discarded.
float var0 <- mean_deviation ([4.5, 3.5, 5.5, 7.0]); // var0 equals 1.125
mean_of
container
mean_of
any expression
—> unknown
mean_of
(container
, any expression
) —> unknown
the mean of the right-hand expression evaluated on each of the elements of the left-hand operand
in the right-hand operand, the keyword each can be used to represent, in turn, each of the right-hand operand elements.
unknown var2 <- [1::2, 3::4, 5::6] mean_of (each); // var2 equals 4
unknown var1 <- [1,2] mean_of (each * 10 ); // var1 equals 15
min_of, max_of, sum_of, product_of,
meanR
meanR
(container
) —> unknown
returns the mean value of given vector (right-hand operand) in given variable (left-hand operand).
list<int> X <- [2, 3, 1];
int var1 <- meanR(X); // var1 equals 2
median
median
(container
) —> unknown
the median of all the elements of the operand.
unknown var0 <- median ([4.5, 3.5, 5.5, 3.4, 7.0]); // var0 equals 5.0
mean,
message
message
(unknown
) —> msi.gama.extensions.messaging.GamaMessage
to be added
milliseconds_between
date
milliseconds_between
date
—> float
milliseconds_between
(date
, date
) —> float
Provide the exact number of milliseconds between two dates. This number can be positive or negative (if the second operand is smaller than the first one)
milliseconds_between(d1, d2) -: 10
min
min
(container
) —> unknown
the minimum element found in the operand.
the min operator behavior depends on the nature of the operand
unknown var0 <- min ([100, 23.2, 34.5]); // var0 equals 23.2
max,
min_of
container
min_of
any expression
—> unknown
min_of
(container
, any expression
) —> unknown
the minimum value of the right-hand expression evaluated on each of the elements of the left-hand operand
in the right-hand operand, the keyword each can be used to represent, in turn, each of the right-hand operand elements.
unknown var5 <- [1::2, 3::4, 5::6] min_of (each + 3); // var5 equals 5
unknown var1 <- [1,2,4,3,5,7,6,8] min_of (each * 100 ); // var1 equals 100
graph g2 <- as_edge_graph([{1,5}::{12,45},{12,45}::{34,56}]);
unknown var3 <- g2 min_of (length(g2 out_edges_of each) ); // var3 equals 0
unknown var4 <- (list(node) min_of (round(node(each).location.x)); // var4 equals 4
minus_days
date
minus_days
int
—> date
minus_days
(date
, int
) —> date
Subtract a given number of days from a date
date1 minus_days 20
minus_hours
date
minus_hours
int
—> date
minus_hours
(date
, int
) —> date
Remove a given number of hours from a date
date1 minus_hours 15 // equivalent to date1 - 15 #h
minus_minutes
date
minus_minutes
int
—> date
minus_minutes
(date
, int
) —> date
Subtract a given number of minutes from a date
date1 minus_minutes 5 // equivalent to date1 - 5#mn
minus_months
date
minus_months
int
—> date
minus_months
(date
, int
) —> date
Subtract a given number of months from a date
date1 minus_months 5
minus_ms
date
minus_ms
int
—> date
minus_ms
(date
, int
) —> date
Remove a given number of milliseconds from a date
date1 minus_ms 15 // equivalent to date1 - 15 #ms
minus_seconds
Same signification as -
minus_weeks
date
minus_weeks
int
—> date
minus_weeks
(date
, int
) —> date
Subtract a given number of weeks from a date
date1 minus_weeks 15
minus_years
date
minus_years
int
—> date
minus_years
(date
, int
) —> date
Subtract a given number of year from a date
date1 minus_years 3
mod
int
mod
int
—> int
mod
(int
, int
) —> int
Returns the remainder of the integer division of the left-hand operand by the right-hand operand.
int var0 <- 40 mod 3; // var0 equals 1
div,
months_between
date
months_between
date
—> int
months_between
(date
, date
) —> int
Provide the exact number of months between two dates. This number can be positive or negative (if the second operand is smaller than the first one)
months_between(d1, d2) -: 10
moran
list<float>
moran
matrix<float>
—> float
moran
(list<float>
, matrix<float>
) —> float
float var0 <- moran([1.0, 0.5, 2.0], weight_matrix); // var0 equals the Moran index computed
mul
mul
(container
) —> unknown
the product of all the elements of the operand
the mul operator behavior depends on the nature of the operand
unknown var0 <- mul ([100, 23.2, 34.5]); // var0 equals 80040.0
sum,